
Brevet des collèges Pondichéry 26 avril 2016

Exercice 1 3 points

Mélanie est une étudiante toulousaine qui vit en colocation dans un appartement. Ses parents habitent à Albi et elle retourne chez eux les week-ends. Elle rentre à Toulouse le dimanche soir. Sur sa route, elle passe prendre ses 2 colocataires à la sortie n° 3, dernière sortie avant le péage. Elle suit la route indiquée par le GPS de son portable, dont l'affichage est reproduit ci-après.

Elle est partie à 16 h 20 et entre sur l'autoroute au niveau de la sortie no 11 à 16 h 33. Le rendez-vous est à 17 h.

Sachant qu'il lui faut 3 minutes pour aller de la sortie n° 3 au lieu de rendez-vous, à quelle vitesse moyenne doit-elle rouler sur l'autoroute pour arriver à l'heure exacte? Vous donnerez votre réponse en km/h.

Toute recherche même incomplète, sera valorisée dans la notation.

Exercice 2 4 points

Le tableau ci-dessous fournit le nombre d'exploitations agricoles en France, en fonction de leur surface pour les années 2000 et 2010.

	A	В	С	D
1	Surface de l'exploitation	Nombre d'exploitations agricoles		
1		(en milliers)		
2		En 2000	En 2010	
3	Inférieure à 20 ha	359	235	
4	Comprise entre 20 et 50 ha	138	88	
5	Comprise entre 50 et 100 ha	122	98	
6	Comprise entre 100 et 200 ha	64	73	
7	Supérieure à 200 ha	15	21	
8	Total			
9				

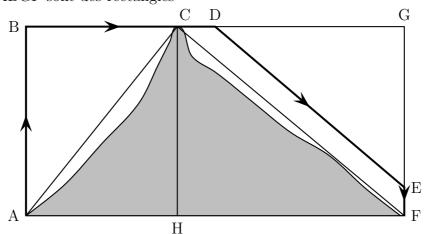
- 1. Quelles sont les catégories d'exploitations qui ont vu leur nombre augmenter entre 2000 et 2010?
- 2. Quelle formule doit-on saisir dans la cellule B8 pour obtenir le nombre total d'exploitations agricoles en 2000?
- 3. Si on étire cette formule, quel résultat s'affiche dans la cellule C8?
- 4. Peut-on dire qu'entre 2000 et 2010 le nombre d'exploitations de plus de 200 ha a augmenté de $40\,\%$? Justifier.

Exercice 3 6 points

Un confiseur lance la fabrication de bonbons au chocolat et de bonbons au caramel pour remplir 50 boîtes. Chaque boîte contient 10 bonbons au chocolat et 8 bonbons au caramel.

- 1. Combien doit-il fabriquer de bonbons de chaque sorte?
- 2. Jules prend au hasard un bonbon dans une boite. Quelle est la probabilité qu'il obtienne un bonbon au chocolat?
- **3.** Jim ouvre une autre boîte et mange un bonbon. Puis un deuxième, sans regarder! Est-il plus probable qu'il prenne alors un bonbon au chocolat ou un bonbon au caramel?
- 4. Lors de la fabrication, certaines étapes se passent mal et, au final, le confiseur a 473 bonbons au chocolat et 387 bonbons au caramel.
 - a) Peut-il encore constituer des boîtes contenant 10 bonbons au chocolat et 8 bonbons au caramel en utilisant tous les bonbons? Justifier votre réponse.
 - b) Le confiseur décide de changer la composition de ses boîtes. Son objectif est de faire le plus de boîtes identiques possibles en utilisant tous ses bonbons. Combien peut-il faire de boîtes? Quelle est la composition de chaque boîte?

Exercice 4 6 points


L'inspecteur G. est en mission dans l'Himalaya. Un hélicoptère est chargé de le transporter en haut d'une montagne puis de l'amener vers son quartier général.

Le pilote : « Alors, je vous emmène, inspecteur? »

L'inspecteur : « OK, allons-y! Mais d'abord, puis-je voir le plan de vol? »

Le trajet ABCDEF est une ligne brisée qui modélise le plan de vol. De plus, on sait que :

- AF= 12.5 km; AC = 7.5 km; CF = 10 km; AB = 6 km; DG = 7 km et EF = 750 m.
- (DE) est parallèle à (CF).
- ABCH et ABGF sont des rectangles

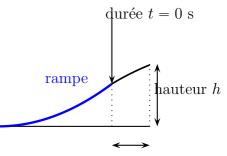
Le pilote : « Je dois faire le plein . . . »

L'inspecteur : « Combien consomme votre hélico? » Le pilote : « 1,1 L par km pour ce genre de trajet »

L'inspecteur: « Mais le plein nous surchargerait! 20 L de carburant, ça suffira amplement. »

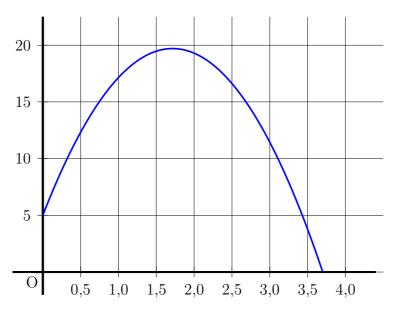
- 1. Vérifier que la longueur du parcours est de 21 kilomètres. Dans cette question, toute trace de recherche sera valorisée.
- 2. Le pilote doit-il avoir confiance en l'inspecteur G? Justifier votre réponse.

Exercice 5 5 points


Lors d'une course en moto-cross, après avoir franchi une rampe, Gaëtan a effectué un saut record en moto.

Le saut commence dès que Gaëtan quitte la rampe.

On note t la durée (en secondes) de ce saut.


La hauteur (en mètres) est déterminée en fonction de la durée t par la fonction h suivante :

$$h: t \mapsto (-5t - 1, 35)(t - 3, 7).$$

distance horizontale d

Voici la courbe représentative de cette fonction h.

Les affirmations suivantes sont-elles vraies ou fausses? Justifier graphiquement ou par le calcul.

- 1. En développant et en réduisant l'expression de h on obtient $h(t) = -5t^2 19,85t 4,995.$
- 2. Lorsqu'il quitte la rampe, Gaëtan est à 3,8 m de hauteur.
- 3. Le saut de Gaëtan dure moins de 4 secondes.
- 4. Le nombre 3,5 est un antécédent du nombre 3,77 par la fonction h.
- 5. Gaëtan a obtenu la hauteur maximale avant 1,5seconde.

Exercice 6 4 points

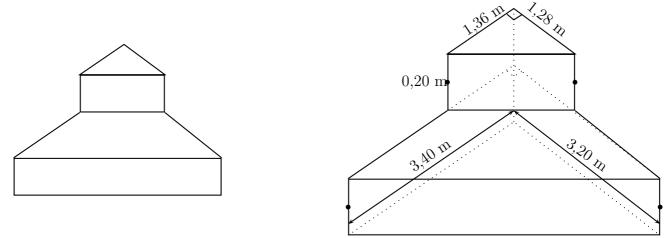
Lors des soldes, Rami, qui accompagne sa mère et s'ennuie un peu, compare trois étiquettes pour passer le temps.

La première étiquette indique un prix barré de 120 € et un prix non barré de 105 €.

La deuxième étiquette indique un prix de $45 \in$ avec la mention -30 %.

La troisième étiquette indique un prix de $25 \in$ avec la mention $-12, 50 \in$.

- 1. Quelle est le plus fort pourcentage de remise?
- 2. Est-ce que la plus forte remise en euros est la plus forte en pourcentage?


Exercice 7 3 points

Dans ce questionnaire à choix multiples, pour chaque question, des réponses sont proposées et une seule est exacte. Aucune justification n'est attendue.

Questions	Réponse A	Réponse B	Réponse C
1. $(2x-3)^2 = \dots$	$4x^2 + 12x - 9$	$4x^2 - 12x + 9$	$4x^2 - 9$
2. L'équation $(x+1)(2x-5) = 0$ a pour solutions	1 et 2,5	-1 et -2, 5	-1 et 2, 5
3. Si $a > 0$ alors $\sqrt{a} + \sqrt{a} = \dots$	a	$2\sqrt{a}$	$\sqrt{2a}$

Exercice 8 5 points

Afin de faciliter l'accès à sa piscine, Monsieur Joseph décide de construire un escalier constitué de deux prismes superposés dont les bases sont des triangles rectangles.

Information 1 : Volume du prisme = aire de la base \times hauteur; 1 L = 1 dm³

Information 2 : Voici la reproduction d'une étiquette figurant sur un sac de ciment de 35 kg.

Dosage pour 1 sac de 35 kg	Volume de béton obtenu	Sable (seaux)	Gravillons (seaux)	Eau
Mortier courant	105 L	10		16 L
Ouvrages en béton courant	100 L	5	8	17 L
Montage de murs	120 L	12		18 L

Dosages donnés à titre indicatif et pouvant varier suivant les matériaux régionaux et le taux d'hygrométrie des granulats

- 1. Démontrer que le volume de l'escalier est égal à 1,262 08 $\mathrm{m}^3.$
- 2. Sachant que l'escalier est un ouvrage en béton courant, déterminer le nombre de sacs de ciment de 35 kg nécessaires à la réalisation de l'escalier.
- 3. Déterminer la quantité d'eau nécessaire à cet ouvrage.